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In this paper we present an analysis of the possible equivalence of Dirac and 
Maxwell equations using the Clifford bundle formalism and compare it with 
Campolattaro's approach, which uses the traditional tensor calculus and the 
standard Dirac covariant spinor field. We show that Campolattaro's intricate 
calculations can be proved in few lines in our formalism. We briefly discuss the 
implications of our findings for the interpretation of quantum mechanics. 

1. I N T R O D U C T I O N  

The Maxwell  equat ions and the Dirac equat ion are among  the most  
celebrated equat ions  o f  physics. Several presentat ions o f  the Maxwell  
equat ions  in (matrix) Dirac-like " sp inor"  form can be found  in the literature 
[see Rodr igues  and de Oliveira (1990) for discussion],  some of  them moti- 
vated to give a "first quant iza t ion"  interpretat ion o f  Maxwell  fields. The 
possibil i ty o f  an intimate relat ionship between the Maxwell  and Dirac fields 
is an object  o f  serious specula t ion since it could  provide an answer to a 
long-s tanding question: what  is an electron? 

That  possibility has been considered by us in two previous papers (Vaz 
and Rodrigues, 1992; Rodrigues and Vaz, 1992) by using the Clifford bundle 
formalism. A m o n g  the many  advantages  o f  this approach  we can consider  
its simplicity and the fact that  with it the Maxwell  and Dirac fields are 
represented by objects of the same mathemat ical  nature. In Vaz and 
Rodrigues (1992) we show that  starting from the f r ee  Maxwell equations 
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946 Vaz and Rodrigues 

and by writing 3 

F = bOTIT20 * (1) 

for  the e lectromagnet ic  field [where ~ is a Di rac -Hes tenes  (DH)  spinor  
field] that  the nonl inear  D H  equat ion 4 

y"O.~pyly2+ ~-(q/) = 0 (2) 

with 

~-(0)  = Y"~yay2(a.O*)~,9(O*O) ' (3) 

is equivalent  to the free Maxwell  equations,  and that  there are two solutions 
~b o f  equat ion  (2) which satisfy the D H  equat ion  (which is the representat ive 
o f  the s tandard  Dirac equat ion  in the Clifford bundle  over Minkowski  
spacetime). These two solutions were natural ly identified as "electron" and 
"posi t ron" solutions. In Rodrigues and Vaz (1992) we generalized our  
approach  in order  to obtain localized "e lec t ron"  solutions. In Section 2 we 
briefly review our  approach .  

The possibili ty o f  an intimate cor respondence  betweel~ Maxwell  and 
Dirac fields has also been  considered by Campola t t a ro  (1980a, b, 1990). 
Campola t t a ro  (1980a) deduced  a nonl inear  Dirac-like spinor  equat ion (for 
the usual s tandard  Dirac  covariant  spinor  field) equivalent  to the Maxwell  
equations.  For  the case where  the electromagnet ic  current J = 0 the equat ion  
is (see foo tnote  4) 

.y5a 
e 

y"O.* = - i v " - -  { I m ( 0 . ~ )  - y s Im(O.~t y s~ )} ' t  t (4) 
P 

where 

Im(Og~Ts~) -- -�89 O~CIt iyS~ - CIt iysOg q: ) (5) 

I 
I m ( O ~ x I  t) = ~ ( 0 . ~  - ~0~1t)  (6) 

and a is the " c o m p l e x i o n "  (Misner and Wheeler,  1957) o f  the field F "~ in 
the given point.  We also have 

cos a - , sin a - (7) 
P P 

p2  = ( 'P't ')2 + (gryS'u 2 (8) 

so that  f~l = ~'t~ and ~2 = ~ T  5~ are the invariants in the Dirac theory.  

3This is always possible according to the theorem of Rainich-Misner-Wheeler (see 
Appendix B). 

4In equations (1)-(3), etc., yu are the generators of the local Clifford algebra R~. 3 of the 
Clifford bundle. The y~ in equation (4), etc., are the usual Dirac matrices in the standard 
representation. We shall use the same symbol for both objects, since no confusion appears 
in the text. 
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Now if we compare equations (2) and (4) we see that they look very 
different. However, Campolattaro started his demonstration of the 
equivalence between equation (4) and the Maxwell equations by proving 
that any given electromagnetic field F ~ can be written as 

F "~ = �89 " (9) 

where y["y  vl =�89 ", y ~] = ~(y"y" - y~y ' ) .  
Despite the apparent difference between equations (2) and (4) and the 

apparent similarity between equations (1) and (9), a difference exists. In 
fact, while O in equations (1)-(2) is a DH spinor field, i.e., an operator 
spinor field according to Figueiredo et al. (1990a, b), �9 in equations (4) 
and (9) is a standard Dirac covariant (SDC) spinor field, according to 
Figueiredo et al. (1990a, b). Thus ~ is the usual Dirac conjugate ct' = 0 + ~0. 
In Rodrigues and Oliveira (1990) it is shown that �9 can be identified with 

= q,e, where e = �89 + y0)c  sec qgl(M, fi,) is a global idempotent field. 
It is reasonable to suppose that equations (2) and (4) are different 

representations for the same equation. This is indeed the case. We prove 
this explicitly in Section 3, and since these two equations are the same, (4) 
has plane wave solutions, as we shall see. It is very difficult to see this fact 
directly from equation (4), but from equation (2) this is a trivial task. Also, 
with that proof, our theory (Vaz and Rodrigues, 1992; Rodrigues and Vaz, 
1992) can now be translated into "traditional" mathematical terms. 

2. T H E  C L I F F O R D  B U N D L E  A P P R O A C H  

Let ~I (M,  ~) be the Clifford bundle of differential forms over Mink- 
owski spacetime. The spacetime algebra is the typical fiber of the bundle 
(Rodrigues et al., 1989; Rodrigues and Figueiredo, 1990; Maia et aL, 
1990). Let {e~,} ~ sec T M  be a basis of T M  and {y~} E sec T * M  = sec A1M c 
sec ~l(  M,  ~, ) the dual basis, satisfying y~'y~ + y~y~ = 2+l~v; r l~  = 
diag(1, -1 ,  -1 ,  -1) .  The Dirac operator 0 acting on sections of ~l (M,  ~,) is 
0 = d - 6, where d is the differential and 6 the Hodge codifferential operator, 
and 0 = d - 8 = T~V~, where V is the Levi-Civita connection of g = r/~,y~| 
y~ ( ~ =  r/~e~@e~). We can choose for simplicity {y~} such that V~=O~; 
thus 0 = y~O~. Now, in this formalism, the free Maxwell equations d F  = 0 
and 6F  = 0 can be written as 

OF=O (10) 

where the electromagnetic field F c sec AZ(M) c sec COl(M, ~). This form of 
the Maxwell equations is originally due to Riesz (1958). On the other hand, 
the Dirac equation for a free electron can be written in this formalism as 

O ~ ' @ y 2 + ~  Oy~ = 0 (11) 
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which is due to Hestenes (1966, 1967, 1975). The DH spinor field q,c 
sec(A~ + A2(M)+ A4(M))c  sec ~l(M, ~) can be written in the canoni- 
cal form 

= pl/2 e~,St3/2R (12) 

where p,~csecA~ and Vx~M, RzSpin+(1,3)-~ 
SL(2, C), i.e., RR*= R*R = 1, where * (called reversion) is the principal 
antiautomorphism in ~1,3 (Figueiredo et al., 1990a, b). Finally 7 5 =  
70717273 is the volume element. 

Now, if we look for a solution of the free Maxwell equations (10) 
having the form given by equation (1), a simple substitution of equation 
(1) in equation (10) gives equation (8). Despite the fact that equation (2) 
is a nonlinear equation, we have shown (Vaz and Rodrigues, 1992) that it 
possesses plane wave solutions that satisfy the DH equation (11)~ namely: 

~_ : pl/2 e~,S#/2 e-,r2-e'(p.x/h) (13) 

~+ = pl/2 eS,~/a/2yl ,)/2 e~2r'(p.x/~) (14) 

which were identified (with/~ = 0 f o r ~  + and/3 = zt for r _ ) as the "electron" 
and "positron" solutions, respectively. We have also proved that ~e- and 
6e+ rotate around the streamlines of an "electromagnetic fluid" with the 
same frequency too = 2meZ/h in different rotation senses and that such a 
rotation motion is the origin of mass in this theory--a conclusion also 
obtained by Hestenes (1991), but with a different point of view. In Rodrigues 
and Vaz (1992) we generalized our approach in order to obtain localized 
"electron" solutions by proving that each component 060 e - i ( p ' x / h )  of the 
DH spinor field satisfies a nonlinear Klein-Gordon equation with non- 
linearity of quantum potential type, that is, 

D~0+ 0=-~-o q, (15) 

Our approach to these localized solutions is to be compared with the ones 
of Gueret and Vigier (1982a-c), Mackinnon (1978, 1981), and Barut (1990). 
Moreover, since the q, field in our approach is of electromagnetic nature, 
we have an intimate relationship between q, and the behavior of phase- 
locked cavities studied by Jennison (1978) and which have the inertial 
properties of classical particles. 

3. PROOF OF EQUIVALENCE BETWEEN EQUATIONS 
(2) AND (4) 

In order to prove that equations (2) and (4) are the same equation, we 
must prove that the components of the spinor field qJ satisfying equation 
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(2) and the components of the spinor field 't t satisfying equation (4) satisfy 
the same equation. Thus we shall first write equation (4) in terms of its 
components, then we shall write equation (2) in terms of its components, 
and finally we compare them. 

Let us calculate the term in braces in equation (4). For 

M . = 0 ~ = (01, 02, --473 --(ff4) (16) 

we have that (the bar over the components denotes complex conjugation) 

Im(O~x~*) = ~- [(0.0,01 - 47,3~.01) + (0~.47202 - 4720~.02) 

- i  
- (0tx473 03 - 4730~r -- (0p.47,04- ~akr ] ~ T r (17) 

- 1  
Im(G,~ y"tr ) = T [ ( 0 ~ , 0 , 0  3 + 1ff30.01) "~- (0.47204 "~- t~0.02)  

- -  - - 1  

-- (0/*~01 -- tfflOg03) -- (e~ta&02-~- 020/*1/J4)] ~ T T] ( lS) 

and then 

{;12~ 101' 
{ i m ( O ~ t ~ ) _  y5 Im(o,ffy"I~)}'I~ - i  I ;  2 = - -  +~1 (19) 

2 ~ : t ; ] ]  .3  \% 
Thus equation (4) is explicitly 

[:'I , . 2 ~- e ~ = 1~:02 + r#l,/& / 1 ,* e ~ -  ~ | x 2 /  

7"r P IX. /  (20) 

\ffl4/ t e J4 + "<I tX, l 
Now we shall write equation (2) in terms of components. In the 

Appendix we show that a DH spinor field has the following matrix 
representation: 

0._ - flY2 Iffl 04 - 0*--  - 0 2  0, -04  03 (21) 
o3 474 o, -0221' - 4 7 3 - &  47, 472 

4 --473 02 47 04 03 --02 0, 

902/32/6-5 
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Since we also have 

3 :) 
the calculation of ~(0)  is a simple task. We have 

[~ , 472 0~ -&) 
2 --471 04 473 

0'ylT2 = --i 03 --& 01 472 

\~, & o2 -47, 
Also, 

/,,. 

07'720.0" = _ i / ;  '2 

V: 
= -iI_~CD 

where we have defined 

-47, 04 ~_,11-o.,2 0.01--0.04 
--& 01 02 I~--0.03--0.474 0.471 

473 02 --01/ ' --0,1/14 0,03 --0,02 

B C D 

- A  - D  C 
D A B 
C B - A  

A = 0,0.471 - 4720.02 - 030.473 + ~0~.04 

B = 010.472 + 4720.0,- 030.ff-~- 4740.03 
C = --010,473 -- 4720p~04 ~- 030/.471 "{- 4740,02 

D = -- 010,474 -~- 4720.03-~ 030.472- 4740,01 

Since 03,23, ' =  - 0 y l y  2 we have, using equations (24) and (23), 

A n C D \ / O ,  47203 

0y, 2(O,~0,)0yzy, = B - A  - D  C / 1 0 2 - 4 7 ,  04 
C D A B / I  03 --& 01 

8 -A/ \04  +47~ < - D  C 

E F G A 
- F  E H - G )  =~ 
G H E 
H - G  - F  

(22) 

(23) 

-a.474\ 
o.0_3| 
0 .02 /  0.01/ 

(24) 

(25) 

(26) 

(27) 

(28) 

472 
-471 

(29) 
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where we used 

E = At) ,  + Bt) 2 + Ct) 3 q- Dt)4 (30) 

F = A~2 - B~I -  C~4 q- D~3 (31) 

G = At) 3 q- Bt) 4 q- Ct) 1 q- Dr)2 (32) 

H = - J 0 2 +  B03+ C~2-  D01 (33) 

Finally, since t ) t ) * = p e  ~'~13 and using equation (29) we have for 
equation (2) 

-y5/3 

y"O~t) = - y "  e �9 (34) 
P 

Now if we introduce the expressions for A, B, C, D into the ones for 
E, F, G, H and remember that 

n I = t) l  Iffl "t- I]./21ff2 -- I/t31if3 -- t)41ff4 (35 )  

s = i(014~3 + t)2 q-;4- t)3 q~l- t)4~2) (36) 

then after a straightforward but tedious calculation we arrive at 

q51 = E = sct)l + r/~3 + fh0~t) l+ if~20~,t)3 (37) 

(~2 m_ __/!~ = ~02 qt- Tit)4 ~t-~C~lO.t) 2 -~- i~'~2O~t) 4 (38) 

~3 = G = ~t)3 + ~'~t)l -~- O 1 0 . t ) 3  + i~-~20,~t)l (39) 

(~4 : B : ~1//4"~- nt)2-~- ~'~10~zt)4"l- ifl2Cg.t)2 (40) 

and 

= -)73 t)2 ,1(2 ,~1 )(4 _~ fl10r x 
X3 /~4 Xl - ,~2  t)3 

4 --')(3 X2 ~ I  \t). 

- G  t)2 47i 
+ ia~o. -02  t)3 04 

\4,2 & t)4 - 

-G 03 &) 
G 4,4 -G 
& t)l -~2 

-G t)2 ~1 

(41) 
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The last matrix can be written as 

~r4--[~3 ~/2 ,t~l 0 , l i  < I~l I//4 --1~3 
O,-02 03 ~4 = o /I,3 ~4 ~'tl--~2 

2 ~1 0 4 - 0 3 ]  ~0 1 4--lff3 ~/2 ~1 
(42) 

in such a way that the sum of the two latter matrices in equation (41) is 

i' -~;2 ~,3 4;4) 02 ~1 ~/4 --~3 
a,o~ 3 474 O~ -47~ 

~J4 --~3 ///2 ~1 

t i O\ /0  _ a  0 i |o  IO 2 ~1 
0 /3 3 1~4 
i / \ '4 -~3 

= ( s  ','5~2)c~. ~' 

Now if we use equation (21) we find that 

t ~1 0 i~'~2 ! )  
~O0, = ~a 0 i 

~ .1 
i[~ 2 0 ~'~1/ 

04 -q;3 
O= q;, 

(43) 

= ~1-Y5s (44) 

--1~2 ~]3--#~41 ,)//1. ~-Tsfl/X1--'~2 X 3 P  IA /~4)i~1 X,')(4 ,~4) ~1 •4 --~3 =__! I v3 --t~3 ~4 ,, - '~4 2 ~ - ~ 1 ~  -~2 

-~, ,2 ' 7  V 4 -~' x2 ,~, 
(47) 

(46) 

that 

= x + ( 0 0 " ) o ~ 0  = X + p e 7 ' r  

where X is the first matrix on the rhs of equation (41). 
Introducing this result in equation (32), we get 

1 e -rs~  
T"o~O = - ~ T "  - -  X 

p 

or, in terms of components, 

(45) 

and using equation (44) in equation (43) and then in equation (41) we have 
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Now we compare equations (20) and (47): they are the same equation !5 
Thus we have proved that equations (2) and (4) are one and the same 
equation. The reader is invited to compare our approach to equation (2) 
in Vaz and Rodrigues (1992)--just one line of calculus-- with that one of 
Campolattaro (1990) to equation (4)~s ix  pages of calculus. 

Note the identification of  the "complexion" a with /3, whose values 
fl = 0 and fl = z~ distinguish electrons from positrons in the Dirac theory 
(Vaz and Rodrigues, 1992; Hestenes, 1991). 

4. PLANE WAVE SOLUTIONS OF THE 
NONLINEAR EQUATION 

It is only a matter of  verification to see that plane waves are solutions 
of  equation (20) or equation (47). To simplify the calculations, we shall 
consider the rest frame. The equations for the components are 

1 
0o~t = --~p [ c o s f l ( ~ l l + t l l ~ 3 ) - - i s i n f l ( ~ 1 3 + ~ l l )  ] (48) 

1 
0002 = - -~ '~  [COS fl  (~ /2 - t -  711//4) -- i sin/3 (~.t4"~- 7~J2) ] (49 )  

1 
0003 = - ~ p  [cos/3 (~:qJ3 + rtqJl) - i sin/3 (~0~ + r/03) ] (50) 

1 
001//4 ~- - - V  [COS /3 (~1~4-~ ~1~2 ) -- i sin/3 (~:02 + ~'~J4)] (51) 

where, in accordance with equations (17) and (18), 

-- (OlZlff3 ~J3 -- [ff3a/xl~t3) -- (a/xlff4l~4 -- 1ff40/~1~4) (52) 

n = (a/x~ff, I//3 - lff3O/xl~,) --F (o/xlff21[] 4 - lff4Otxl[.f2) 

- (a.~3~ b, + ~,a.~b3) - ( a . • e2  + lff2a/xl/J4) (53) 

Now it is trivial to verify that 

(00:) �9 ~-) = v/-p e-~"c2'/~; *(2-) = V~ e , , .d, / .  (54) 

5More precisely, each column of equation (17) contains the same information as equation (20). 
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are solutions of  the above equations (48)-(51) provided that 

/ 3 = 0  

and that 

*~+~ = 4 ~  e '~2'/~ 

Vaz and Rodrigues 

(55) 

(56) 

are also solutions of  equations (48)-(51) provided that 

/3 = 7r (57) 

These solutions (54)-(56) are written in the spacetime algebra as 

4,~ -> :~/-p e vS'/2 (58) 

)t2Tirric2tl h ~p~-) = ~ erSt3/2y3y ~ e In =o (59) 

~O~ +> --/-Z~ 2 ov2v"d'/~l (60) - - v p ~ -  r 3 / c I/3=~ 

I~ r = ~ e~'5/3/2]/3]/l 'yl ]/2 e~'2"~"c~'/~[,=~ ( 6 1 )  

which can be easily verified by right multiplication by the idempotent  
e = �89 + y ~ according to the me thod  described in Rodrigues and Oliveira 
(1990). 

5. C O N C L U S I O N S  

We cannot but be surprised by the fact that equation (4) exhibits plane 
solutions. Indeed it is very difficult to deal with it, so that the proof  requires 
an extensive calculus. On the other hand, the Same equation in the Clifford 
bundle, equation (2), is simple, and the fact that it exhibits plane wave 
solutions can be easily seen in this case. The essential difference between 
our method and the one of  Campolat taro is that a D H  spinor field can be 
represented as a matrix which has an inverse, while the SDC spinor field 
used by Campolat taro  is represented by a one-column matrix which does 
not have an inverse. Thus Campolat taro ' s  method is expected to be more 
complicated. 
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A P P E N D I X  A. M A T R I X  R E P R E S E N T A T I O N  O F  T H E  D I R A C -  
H E S T E N E S  S P I N O R  F I E L D  

In  this Append ix  we give a matrix representat ion for the D H  spinor  
field. In  the Dirac representat ion we have 

1o o1)(o) y o =  0 1 = ~ 

- 1  0 

0 - 

1 1 0 1 

Y = - - 1  = --0"1 

0 

o o_:)( ;~) , /2= i = 0 

i , --~2 

0 

tlo l )t o31 3 0 - -  0 

Y = 0 = -o" 3 

1 

Since ~0 ~ sec (A~ + AZ(M) + A 4) = sec ~gI(M, ~,), we have that 

~t = a l  + aotY~ + ao27~ 2 + ao3Y~ q- a1271~ 2 

+ a137173 + a237273 + ao123Y~ 

but  in this representat ion 

(~1)  ( o )  TOy l =  0 o y 2 =  o-2 
o.l 0 ; o'2 0 ; 

(o 
,/~ = y s =  - i  1 

Thus we have 

;) 

o3(0  o) 
2 3 _i(o1 o) 



956 Vaz and Rodrigues 

where 

~1 : a o -  ia12 

~2 = --a13 -- ia23 

1~3 = ao3 -- iao123 

~4  : aol q- iao2 

For  q,* = y~176 we have then 

- - 73 

~/4 ~/3 --~ff2 ~1 

A P P E N D I X  B. T H E O R E M  OF R A I N I C H - M I S N E R - W H E E L E R  

In  this Append ix  we give a p roo f  in terms of  spacetime algebra o f  the 
theorem o f  Ra in i ch -Misne r -Whee le r  (Rainich, 1927; Misner  and Wheeler,  
1957) because  o f  its fundamenta l  impor tance  for this work. 

I f  we define an extremal field as a field for  which the magnet ic  (electric) 
field is zero and the electric (magnetic)  field is parallel to one coordinate  
axis, the theorem of  Ra in i ch -Misne r -Whee le r  says that: "At  any point  o f  
Minkowski  spacet ime any  nonnul l  e lectromagnet ic  field can be reduced  to 
an extremal field by a Lorentz  t ransformat ion  and a duali ty rotat ion."  

Let F = ~F~,~y ~" ̂  y~ ~ sec A2(M) c sec C~l(M, ~,) be the e lectromagnet ic  
field. The invariants o f  F are given by F 2 = F .  F + F A F. In terms o f  Pauli 

Hio'i ,  ~ = y ' y  0, a l g e b r a  R3, 0 = R~,3 we have F = E + i~H, where E = Ei~ri, H = i 
i '=  trlo'2o "3 (the tr i are the generators  o f  •3,o), and we have 

F .  F =  E 2 - H 2 ;  F A F = 2 ~ E . H  

Let us consider  a dual i ty  rotat ion o f  F by an angle a, that  is, 

F '  = e~'5'~F = cos a F +  ySF sin a 

The invariants o f  the fields are changed  under  a duali ty rotat ion in 
such a way  that  f rom 

V '2 : e2VS~V2 

we have 

F ' -  F '  = cos 2 a  (F" F )  + sin 2 a ' y S ( F  ^ F )  

F '  ^ F '  = cos 2 a ( F  ^ F )  + sin 2cryS(F �9 F )  
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or, by  wr i t ing  F = E ' +  i 'H', 

E a - H ' :  = cos 2 a  (E 2 - H 2) - sin 2 a 2 ( E  �9 H)  

2 ( E ' .  H ' )  = cos 2 a  2 ( E .  H)  - sin 2 a  (E 2 - H 2) 

N o w  we can choose  a in such a way  tha t  

E' �9 H ' =  0 

tha t  is, 

957 

E [' = E~ = E~' = O; 

Thus,  by  def ining 

we have shown that  

[ e x p ( y 5 8 ) ] / ~ * F / ~  = _ / H o .  3 = H,yl ,y  2 

H 1" = H 2" = 0; n 3" -- ( H  '2 - E ,2)1/2 

~ --Ol~ R .~- R ~ 

T S ( F A F )  2 ( E . H )  
t an  2 a = 

(F" F)  - H : - E :  

and  then  for  F ' .  F '  we have  

E ' 2 -  H '2 = + [(E 2 -  H2)2+ 4 ( E .  H)2] '/2 

where the different signs come from the fact tha t  tan  ~ has pe r iod  n and 
cos(~ + rt) = - c o s  ~, so tha t  the angles ~ and  ~ + zc co r re spond  respectively 
to E ' 2 - H ' 2 < 0  and  E ' 2 - H ' 2 > 0 .  Indeed,  since 2 ~ = ~ + ~  and  
c~ = q~/2 + re/2, so tha t  

e~ '5~ _.= e~AO/2 cys t / 2  = e~,54,/2T 5 

the  dua l i ty  ro ta t ion  by  7r/2, i.e., e r5~/2 = ys,  t r ans fo rms  an electr ic  field into 
a magne t i c  one and  vice versa. 

Now,  a wel l -known ( D o u b r o v i n e  et al., 1987) theorem says that :  "If  
E ' .  H ' =  0, then  there  exists a Lorentz  t r ans fo rma t ion  R such tha t  F " =  
R F ' R * = E " + ~ H "  and  we have  (a) if  E ' 2 - H ' 2 > 0 ,  then  E " # 0  and  
H " = 0 ;  ( b ) E ' 2 - H ' 2 < 0 ,  t hen  E " = 0  and  H " r  Let us f ind this t rans-  
f o r m a t i o n  expl ici t ly .  C o n s i d e r  v = wrY; then  for  a Lorentz  t r ans fo rma t ion  
[ y  = (1 - /32)  -1/2] 

E1 = E~; " - ' . . . .  = " E 2 -  y ( E 2 + f l H 3 ) ,  E3 y ( E ; - f l H ; )  
t !  - -  ! .  ! !  _ _  r v . tv 

H1 - H I ,  /42 - r ( H : + / 3 E 3 ) ,  /43 = r(E'3-13E'2) 

C o n s i d e r i n g  a dua l i t y  ro ta t ion  such tha t  E ' .  H ' =  0 and  E ' 2 - H ' 2 <  0 
and  choos ing  ~r 2 and  cr 3 such tha t  E =  E~r 2 and  H =  H o  "3 and  fi = v / c =  
E / H ,  we have  
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f rom which  it fol lows tha t  

F = [ e x p ( 7 5 8 ) ] / ~ ( H y ' 7 2 ) / ~  * 

or, by writing 

that 

H = bp, ~h = ~ [ e x p ( y S S / 2 ) ] R  

F = bOy~y2(p 

Vaz and Rodrigues 
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